Chapter 5

5.1.1:

- 5-7. $x \approx 7.50$ and $y \approx 8.04$ units; Sine or cosine could be used to get the first leg, then any one of the trig ratios or the Pythagorean Theorem to get the other.
- 5-8. a: False (a rhombus and square are counterexamples)
 b: True
 c: False (it does not mention that the lines must be parallel, so a counterexample)
 - **c:** False (it does not mention that the lines must be parallel, so a counterexample with two non-parallel lines cut by a transversal can be drawn.)

5-9. a: (0.8)(0.8) = 0.64 = 64% b: (0.8)(0.2) = 0.16 = 16%

5-10. area = 74 sq. un, perimeter = 47.66 units

5-11.	a: <i>x</i> =	- 3 b :	<i>m</i> = 10	c:	$p = -4$ or $\frac{2}{3}$	$\frac{2}{3}$ d :	x = 23
-------	----------------------	-----------------------	---------------	----	---------------------------	--------------------------	--------

5.1.2:

- **5-16.** a: $\sin 22^\circ = \frac{x}{17}$, $x \approx 6.37$ b: $\tan 49^\circ = \frac{7}{x}$, $x \approx 6.09$ c: $\cos 60^\circ = \frac{x}{6}$, x = 3
- **5-17.** ≈ 26.92 feet parents boyttiend niece 1 ÷ ÷ **5-18. a:** a possible area model: parents $\frac{1}{9}$ 1 18 $\frac{1}{6}$ ÷ **b:** $\frac{1}{4}$ niece 1 18 1 36 $\frac{1}{12}$ ÷ **c:** $\frac{1}{9} + \frac{1}{6} + \frac{1}{6} + \frac{1}{4} = \frac{25}{36} \approx 69\%$ boyfriend $\frac{1}{6}$ $\frac{1}{4}$ 1 12 ÷
- 5-19: a: False (a 30°- 60°- 90° triangle is a counterexample)
 b: False (this is only true for rectangles and parallelograms)
 c: True
- **5-20.** $\triangle ABC \sim \triangle EFD$ by $SAS \sim$

5.1.3:

	5-26.	a:	$x = \pm 5$	b: all numbers	c:)	x = 2	d: no solution
--	-------	----	-------------	-----------------------	-------------	-------	-----------------------

5-27. ≈ 11.5 seconds

- **5-28.** a: $\frac{3}{8}$ b: $\frac{1}{8}$ c: $\frac{3}{8}$ d: $\frac{1}{8}$ The sum must be equal to one.
- **5-29.** area ≈ 294.55 square units, perimeter ≈ 78.21 units
- 5-30. 9.38 minutes

5.1.4:

- **5-36.** All of the triangles are similar. They are all equilateral triangles.
- **5-37.** Since $\tan(33.7^\circ) \approx \frac{2}{3}$, $y = \frac{2}{3}x + 7$.
- **5-38.** a: $\sin \theta = \frac{b}{a}$ b: $\tan \theta = \frac{a}{b}$ c: $\cos \theta = \frac{a}{b}$
- 5-39. a: $\frac{4}{20} = \frac{1}{5}$ b: $\frac{4}{5}$, Since the sum of the probabilities of finding the ring and not finding the ring is 1, you can subtract $1 - \frac{1}{5} = \frac{4}{5}$.
 - c: No, his probability is still $\frac{4}{20} = \frac{1}{5}$ because the ratio of the shaded region to the whole sandbox is unchanged.
- **5-40.** a: $\cos 23^\circ = \frac{18}{x}$ or $0.921 = \frac{18}{x}$ b: Since 67° is complementary to 23°, then $\sin 67^\circ = \cos 23^\circ$. So $\sin 67^\circ \approx 0.921$.

5.2.1:

5-46.	a:	$A = 1$ square units, $P = 2 + 2\sqrt{2}$ units				
	b:	$A = \frac{25\sqrt{3}}{2} \approx 21.65 \text{ square units}, P = 15 + 5\sqrt{3} \approx 23.66 \text{ units}$				
5-47.		$y = 111^{\circ}, x = 53^{\circ}$ b: $y = 79^{\circ}, x = 47^{\circ}$				
	c:	$y = 83^{\circ}, x = 53^{\circ}$ d: $y = 3^{\circ}, x = 3\sqrt{2}$ units				
5-48.	a:	$4\sqrt{2}$ units; students can use the Pythagorean Theorem or can use the fact that it is a 45°- 45°- 90° triangle.				
	b:	It is a trapezoid; 24 square units				
5-49.		Answers vary. Sample responses: $x < 3$, x is even, etc. the length of each leg is 6 units				

5-50. a; not similar b: $SAS \sim$ c: $SSS \sim$ d: $SSS \sim$ or $SAS \sim$

5.2.2:

5-56.	a:	16 units	b: 4 units and $4\sqrt{2}$ units
	c:	24 units	d: 10 and $10\sqrt{3}$ units

- **5-57.** a: $m \measuredangle A = 35^{\circ}, m \measuredangle B = 35^{\circ}, m \measuredangle ACB = 110^{\circ}, m \measuredangle D = 35^{\circ}, m \measuredangle E = 35^{\circ}, m \measuredangle DCE = 110^{\circ}$
 - **b:** Answers vary. Once all the angles are found, State which pairs of corresponding angles have equal measure, such as $m \measuredangle D = m \measuredangle A$, to reach the conclusion that $\triangle ABC \sim \triangle DEC$ by AA ~ or SAS ~.
 - **c:** They are both correct. Since both triangles are isosceles, we cannot tell if one is the reflection or the rotation of the other (after dilation).
- **5-58.** $\cos 52^\circ = \frac{b}{c}$, $\tan 52^\circ = \frac{a}{b}$, $\cos 38^\circ = \frac{a}{c}$
- **5-59.** $\frac{14}{27} = \frac{x}{40}, x \approx 20.74$ inches

5-60. a: $\frac{1}{2}$ b: 0 c: $\frac{3}{4}$ d: 1

5.3.1:

5-67. ≈ 61°

- 5-68. a: impossible because a leg is longer than the hypotenuseb: impossible because the sum of the angles is more than 180°
- **5-69.** William is correct.
- **5-70.** a: A'(-3,-6), B'(-5,-4), C'(0,-4) b: A'(3,3), B'(1,1), C'(1,6)
- **5-71.** a: $x = \frac{16}{5}$ b: no solution c: x = -11 or 3 d: x = 288
- **5-72.** b is correct; if two sides of a triangle are congruent, the angles opposite them must be equal.

5.3.2:

- **5-79.** They must have equal length. Since a side opposite a larger angle must be longer than a side opposite a smaller angle, sides opposite equal angles must be the same length.
- **5-80.** ≈ 10.6 units
- **5-81.** 72 square units
- **5-82.** 12.6
- **5-83.** 36%
- **5-84.** (-2,4)

- 5.3.3:
- **5-89.** a: 29% b: $\cos 29^\circ = \frac{y}{42}, y \approx 36.73$

5-90. a: (-1,-2) b: (4,-4) c: (3,4)

5-91. a: It uses circular logic.
b: The arrow between "Marcy likes chocolate" and "Marcy likes Whizzbangs" should be reversed. The arrow connecting "Marcy likes chocolate" and "Whizzbangs are 100% chocolate" should be removed.

5-92.
$$\tan^{-1}(\frac{3}{4}) \approx 36.87^{\circ}$$

5-93. a: $\frac{1}{12}$ b: $\frac{1}{3}$

5-94. C

5.3.4:

- 5-100. a: The diagram should be a triangle with sides marked 116 ft. and 224 ft. and the angle between them marked 58°.
 b: ≈ 190 feet
- 5-101. a: Corresponding angles have equal measure.b: The ratio of corresponding sides is constant, so corresponding sides are proportional.
- **5-102.** $y = (\tan 25^\circ)x + 4$ or $y \approx 0.466x + 4$
- **5-103.** It must be longer than 5 and shorter than 23 units.
- 5-104. 7 years
- 5-105. B

5.3.5:

- **5-114.** The third side is 12.2 units long. The angle opposite the side of length 10 is approximately 35.45°, while the angle opposite the side of length 17 is approximately 99.55°.
- **5-115.** $x \approx 11.3$ units; Methods include using the Pythagorean Theorem to set up the equation $x^2 + x^2 = 16^2$, using the 45°- 45°- 90° triangle shortcut to divide 16 by $\sqrt{2}$, or to use sine or cosine to solve using a trigonometric ratio.
- **5-116.** No, because to be a rectangle, the parallelogram needs to have 4 right angles. Possible counterexample: a parallelogram without 4 right angles.
- **5-117. a:** $P \approx 40.32$ units, A = 72 sq. units **b:** P = 30 units, A = 36 sq. units
- **5-118.** *A*(2,4), *B*(6,2), *C*(4,5)
- **5-119.** $y = \frac{3}{4}x + 4$
- 5-120. a: m∠ABE = 80°, m∠EBC = 60°, m∠BCE = 40°, m∠ECD = 80°, m∠DEC = 40°, m∠CEB = 80°, m∠BEA = 60°
 b: 360°
- **5-121.** a: ≈ 8.64 cm b: PS = SR = 5.27 cm, so the perimeter is ≈ 25.5 cm
- **5-122.** area ≈ 21.86 sq. units, perimeter ≈ 24.59 units
- **5-123.** a: (0.7)(0.7) = 0.49 = 49% b: (0.3)(0.7) = 0.21 = 21%
- **5-124.** a: $5 + \sqrt{20} + \sqrt{37} \approx 15.55$ units **b:** ≈ 31.11 **c:** (-2,0)
- **5-125.** a: $x = \frac{45}{4} = 11.25$ c: x = 1.3b: x = -10 or x = 10d: no solution