Chapter 6

6.1.1:

- 6-4. a: alternate interior angles b: vertical angles c: $\measuredangle u \& \measuredangle z, \measuredangle s \& \measuredangle x, \measuredangle v \& \measuredangle w, and \measuredangle t \& \measuredangle y$
- 6-5. a: They are similar by SAS~.b: Yes, because they are similar and the corresponding sides have a ratio of 1.
- **6-6.** $3x + 1^\circ + 52^\circ = 180^\circ, x = \frac{127}{3} = 42.33^\circ$
- **6-7. a:** 8 **b:** ≈14.97 **c:** ≈15.2
- 6-8. 1a and 1b: statements *ii* and *iv*
 - **2:** The cupcakes are burned
 - 3: The fans will not buy the cupcakes because they are burned
 - 4: The team will not have enough money for uniforms

6-9. A

6.1.2:

- **6-13.** $a = 97^{\circ}, b = 15^{\circ}, c = 68^{\circ}, d = 68^{\circ}$
- 6-14. a: ≈ 3.75 , tangent b: $7\sqrt{2} \approx 9.9$, Pythagorean Theorem or $45^\circ - 45^\circ - 90^\circ$ ratios c: ≈ 9.54 , Law of Cosines
- **6-15. a:** 25 units **b:** 56 square units and 350 square units
- 6-16. a: A'(-2,-7), B'(-5,-8), C'(-3,-1)
 b: A"(2,7), B"(5,8), C"(3,1)
 c: reflecting across the y-axis
- 6-17. Let *B* represent the measure of angle *B*. Then $(3B + 5^\circ) + B + (B 20^\circ) = 180^\circ$, so $m \measuredangle A = 122^\circ$, $m \measuredangle B = 39^\circ$, and $m \measuredangle C = 19^\circ$.
- **6-18.** A

6.1.3:

- 6-24. Reasoning can vary. Sample responses:
 - **a:** $a = 123^{\circ}$, when lines are //, corr. \measuredangle s are =, $b = 123^{\circ}$, when lines are //, alt. int. \measuredangle s are =, $c = 57^{\circ}$, suppl. \measuredangle s
 - **b:** all = 98°, suppl. \measuredangle s, then °, when lines are // , alt. int. \measuredangle s = and corres. or vert. \measuredangle s =
 - c: $g = h = 75^\circ$, °, when lines are //, alt. int. or corres. $\measuredangle s =$, then vert. $\measuredangle s =$
- **6-25.** a: 40%
 - **b:** To make only one freethrow, Vicki needs to make the first and miss the second. This probability is $0.6 \cdot 0.4 = 0.24$ or 24%. The probability of her scoring two free-throws is $0.6 \cdot 0.6 = 0.36$ or 36%. Therefore, she has a greater chance of scoring two points than one. This is a counter-intuitive result that could benefit from some discussion in class at a later point if time allows.
- **6-26.** a: x = -4 and y = 0 b: No solution; the lines are parallel.
- **6-27.** $\frac{4}{10} = \frac{5}{x+5}, x = 7.5$
- 6-28. b: The perimeter of both triangles is ≈ 48.25 units
 c: ≈ 32.9° and ≈ 57.1°
- 6-29. C

6.1.4:

- **6-35.** Justifications and order may vary: $a = 53^{\circ}$, given; $b = 55^{\circ}$, straight angle (with $\measuredangle g$); $c = 72^{\circ}$, triangle angle sum; $d = 53^{\circ}$, when lines are parallel, alternate interior angles are equal; $e = 55^{\circ}$, when lines are parallel, alternate interior angles are equal; $f = 127^{\circ}$, straight angle (with $\measuredangle a$), so they are supplementary.
- **6-36.** *x*-intercept (4,0), *y*-intercept (0,6)
- 6-37. a: For left-hand triangle: $c^2 = 9 + 36 2 \cdot 3 \cdot 6 \cos 60^\circ$, $c = 3\sqrt{3} \approx 5.196$ units; For right-hand triangle: $c^2 = 36 + 27 - 2 \cdot 6 \cdot 3\sqrt{3} \cos 30^\circ$, c = 3 units; They are congruent.
 - **b:** Yes; by $SSS \cong$ or $SAS \cong$.
- 6-38. a: converse: If the ground is wet, then it is raining. Not always true.
 - **b:** converse: If a polygon is a rectangle, then it is a square. Not always true.
 - c: converse: If a polygon has four 90° angles, then it is a rectangle. Not always true.
 - d: converse: If a polygon is a triangle, then it has three angles. Always true.
 - e: converse: If vertical angles are congruent, then two lines intersect. Always true.

6-39. b:
$$\frac{14}{22} = \frac{10}{x}, x \approx 15.71$$

6-40. $\sin 40^\circ = \frac{h}{600}$, $h \approx 385.67$ feet

6.2.1:

- **6-43.** a: $x \approx 45.56$ b: $x \approx 10.63$ c: $x \approx 266.49$ d: x = 5
- **6-44.** 9 square units; One way: Find AC = 5 and then calculate $\frac{1}{2}(5)(3.6)$, or can use \overline{BC} as the base and calculate $\frac{1}{2}(2+4)(3)$.
- 6-45. a: m = 33, n = 36b: area (small) = 378 square units, perimeter (small) = 80 units, area (big) = 850.5 square units, and perimeter (big) = 120 units
- 6-46. a: similar because of AA~
 b: neither because angles not equal
 c: congruent because of ASA≅ or AAS≅

6-47. a: $\approx 71.56^{\circ}$ b: y = x + 3 c: (1,4)

6-48. D

6.2.2:

- 6-50. a: lines l and m are parallel because alternate interior angles are equal
 b: line n is perpendicular to line m because w + k = 180° and if w = k, then each is 90°
 - c: no special statements can be made because vertical lines are always equal
 - **d:** lines *l* and *m* cannot be parallel because otherwise $z + k = 180^{\circ}$.

6-51. a: $\triangle ABC \sim \triangle DEF (AA\sim)$ c: neither congruent nor similar because $m \measuredangle J \neq 62^\circ$. If $m \measuredangle J = 62^\circ$, then $m \measuredangle L = 180^\circ - 2 \cdot 62^\circ = 56^\circ$. Since $\frac{\sin 56^\circ}{5} \neq \frac{\sin 72^\circ}{8}$, this triangle cannot exist.

- 6-52. a: It is a trapezoid. The slope of \overrightarrow{WZ} equals the slope of \overrightarrow{XY} . b: ≈ 18.3 units c: (-9,1) d: 2
- **6-53.** Because alternate interior angles are congruent, the angle of depression equals the angle formed by the line of sight and the ground. Then $\tan \theta = \frac{52}{38}$, $\theta \approx 53.85^{\circ}$.

6-54.
$$c^2$$
 and $a^2 + b^2$

6-55. B

6.2.3:

6-61.	a:	Yes, because parallel lines assure us that the alternate interior angles are congruent. Since corresponding angles in the triangles have equal measure, the triangles are similar by $AA \sim$.		
	b:	$\frac{x}{20} = \frac{x+2}{24}, x = 10$		
6-62.	a:	x = 4 b :	$x = 55^{\circ}$	
			x = 5.5 and $y = 45.2$	
6-63.	are	area ≈ 100.55 square units, perimeter ≈ 43.36 units		
6-64.		288 feet by 256 feet area of shape = 59.5 square units, area of island = 60,928 square units		
	μ.	b. area of shape -37.5 square units, area of Island $-00,720$ square units		
6-65.	a:	a: Yes because of AAS \cong or ASA \cong ; $\triangle DEF \cong \triangle LJK$		
		reflection and rotation		
	c:	$x \approx 4.3$		
6-66.	С			

6.2.4:

6-71.	a:	congruent (HL \cong or SAS \cong)	b: congruent (AAS \cong)	
	c:	not necessarily congruent	d: congruent (SAS \cong)	
6-72.	a:	$x + 4x - 2^\circ = 90^\circ$, $x = 18.4$ (complementary angles)		
	b:	b: $2m + 3^{\circ} + m - 1^{\circ} + m + 9^{\circ} = 180^{\circ}$, $m = 42.25$ (Triangle Angle Sum Theorem)		
	c:	: $7k - 6^\circ = 3k + 18^\circ$, $k = 6$ (vertical angles are equal)		
	д.	$\frac{x}{16} = \frac{8}{13}$, $x \approx 9.8$ (corresponding parts of similar figures have equivalent ratios)		
	u.	$_{16} = _{13}, x \approx 9.0$ (corresponding parts	of similar figures have equivalent fatios)	
6-73.	$x = 11; m \measuredangle ABC = 114^{\circ}$			
6-74.	a:	$\frac{3}{4}$ or 75% b: $\frac{3}{20}$ or 15%	c: 1 or 100%	

6-75. c = 10 because of substitution

6-76. D

6.2.5:

- **6-82.** a: 5x + 3 = 4x + 9 because if lines are parallel, then alternate interior angles are equal, $x = 6^{\circ}$
 - **b:** q = t because if lines are parallel, then corresponding angles are equal; $c + t = 180^{\circ}$ because if lines are parallel, then same-side interior angles are supplementary; 66°
 - c: $180^{\circ} 88^{\circ} = 92^{\circ}$; $g + q = 180^{\circ}$ because when lines are parallel, same-side interior angles are supplementary.
- **6-83.** Methods vary. **a:** $x \approx 10.73$ **b:** $x \approx 7.86$ **c:** $x \approx 15.3$
- 6-84. a: x = 4 b: $x \approx 8.1$

 c: not enough information
 d: $x \approx 10.67$

 6-85. a: $x = 15^{\circ}$ b: k = 5
- **c:** $t = 9^{\circ}$ and $w = 131^{\circ}$ **d:** $x \approx 49.94^{\circ}$
- **6-86.** B