Chapter 8

8.1.1:

8-6. a: 110°
b: 70°
c: 48°
d: 108°

8-7. a: The measure of an exterior angle of a triangle equals the sum of the measures of its remote interior angles.
b: $a+b+c=180^{\circ}$ (the sum of the interior angles of a triangle is 180°), $x+c=180^{\circ}$ (straight angle); therefore, $a+b+c=x+c$ (substitution) and $a+b=x a+b=x$ (subtracting c from both sides).

8-8. $x=72^{\circ}$ and $y=54^{\circ}$
8-9. $\quad 360^{\circ} \div 15^{\circ}=24$
8-10. a: $\cong(\mathrm{SAS} \cong), x=79^{\circ}$ b: cannot be determined
$\mathbf{c}: \cong(\mathrm{AAS} \cong), x \approx 5.9$ units $\quad \mathrm{d}: \cong(\mathrm{SAS} \cong), x \approx 60.9^{\circ}$
8-11. a: True b: False (counterexample is a quadrilateral without parallel sides)
c: True d: True
e: False (counterexample is a parallelogram that is not a rhombus)

8.1.2:

8-16. a: isosceles right triangle, because $A C=B C$ and $\overline{A C} \perp \overline{B C}$
b: 45°, methods vary
8-17. $a=87^{\circ}, b=83^{\circ}, c=96^{\circ}, d=94^{\circ} ; 360^{\circ}$
8-18. $A=40.5$ un $^{2}, P \approx 27.7$ units
8-19. $(-5,1),(-3,7)$, and $(-6,2)$
8-20.

8-21. B

Statements	Reasons
1. $\overline{B C} / / \overline{E F}, \overline{A B} / / \overline{D E}$, and $A F=D C$	1. [Given]
2. $\begin{aligned} & \quad \\ & M \triangle B C F=m \triangle E F C \\ & m \triangle E D F=m \measuredangle C A B\end{aligned}$	2. [If two lines cut by a transversal are parallel, then alternate interior angles are equal.]
3. $[F C=F C]$	3. Reflexive Property
4. $A F+F C=C D+F C$	4. Additive Property of Equality (adding the same amount to both sides of an equation keeps the equation true)
5. $A C=D F$	5. Segment addition
6. $\triangle A B C \cong \triangle D E F$	6. [ASA \cong]
7. $[\overline{B C} \cong \overline{E F}]$	7. $\cong \Delta s \rightarrow \cong$ parts

8.1.3:

8-27. a: $A=36$ sq. $\mathrm{ft}, P=28 \mathrm{ft}$ b: $A=600$ sq. $\mathrm{cm}, P \approx 108.3 \mathrm{~cm}$
8-28. $Q P=R S$ and $P R=S Q$ (given), $Q R=Q R$ (Reflexive Property), so $\Delta P Q R \cong \Delta S R Q \quad(\mathrm{SSS} \cong)$ and $\measuredangle P \cong \measuredangle S(\cong \Delta s \rightarrow \cong$ parts $)$.

8-29. a: isosceles triangle
b: The central vertex must be $360^{\circ} \div 10=36^{\circ}$. The other two angles must be equal since the triangle is isosceles. Therefore, $\left(180^{\circ}-36^{\circ}\right) \div 2=72^{\circ}$.
c: $10 \cdot 14.5=145$ square inches
8-30. $(6.5,5)$

8-31. a: The region can be rearranged into a rectangle with dimensions 14 and 7 units. b: $\quad 14(7)=98$ square units

8-32. B

8.1.4:

8-37. The reflections are all congruent triangles with equal area. Therefore, the total area is $(6)(11.42)=68.52$ square inches.

8-38. a: non-convex
b: convex c: convex
d: non-convex

8-39. a: $64 u^{2}$
b: $\approx 27.0 \mathrm{un}^{2}$
c: $8 \sqrt{3} \approx 13.9$ un 2
8-40. a: 3
b: 15
c: 4
d: 9
8-41. a: $A=192 \mathrm{~cm}^{2}, P=70 \mathrm{~cm}$
b: The length of each side is 9 times the corresponding side in the floor plan. $A=15,552 \mathrm{~cm}^{2}$ and $P=630 \mathrm{~cm}$.
c: The ratio is $\frac{9}{1}=9$; the ratio of the perimeters equals the zoom factor
d: The ratio of the areas is $\frac{81}{1}=81$. The ratio of the areas equals the square of the zoom factor $\left(9^{2}\right)$.

8-42. D

8.1.5:

8-49. a: The interior and exterior angles must be supplementary. Therefore, $180^{\circ}-20^{\circ}=160^{\circ}$.
b: Possible ways: Use $360^{\circ} \div 20^{\circ}=18$ sides or solve the equation

$$
\frac{180(n-2)}{n}=160^{\circ} \text { to find } n=18
$$

8-50. a: $x=18, y=9 \sqrt{3}$
b: $x=24 \sqrt{2}, y=24$
c: $\quad x=\frac{8}{\sqrt{3}}=\frac{8 \sqrt{3}}{3}, y=\frac{16}{\sqrt{3}}=\frac{16 \sqrt{3}}{3}$
8-51. Since the diagonals of a parallelogram bisect each other, they must intersect at the midpoint of $B D$. Thus, they intersect at $(6,21)$.

8-52. $A=100 \sqrt{3} \approx 173.2 \mathrm{~mm}^{2}$
8-53. a: $\pm \sqrt{\frac{17}{5}} \approx \pm 1.84$
b: $w \approx 2.17$ and -1.57
c: no solution possible
8-54. E
8-55.
a: 60°
b: 82°
c: 14°
d: 117°

8-56.
a: equilateral triangle
b: rectangle
c: nonagon
d: rhombus or kite
$8-57$. The x-coordinate must be 6 , but the y-coordinate could be $6 \sqrt{3}$ or $-6 \sqrt{3}$.
8-58. a: Yes; since $B C=B C$ (Reflexive Property), $\overline{A B} \cong \overline{D C}$ (given), and $\measuredangle A B C \cong D C B$ (given), then $\triangle A B C \cong \triangle D C B$ (SAS \cong). Therefore, $A C=D B$ ($\cong \Delta s \rightarrow \cong$ parts).
b: No; the relationships in the figure are true even if points B and C were "hinged," as long as the two angles remain congruent. See the diagram for problem 8-28 for a similar diagram.

8-59. a: $(-2.5,0)$ and $(3,0)$
b: The graph of $y=-\left(2 x^{2}-x-15\right)$ would be the reflection of $y=2 x^{2}-x-15$ across the x-axis because each y-value would have its sign changed.

8-60. D

8.2.1:

8-65. a: $A=34$ un $^{2}, P \approx 25.7$ units b: $A=306$ un $^{2}, P \approx 77$ units c: ratio of the perimeters $=3$; ratio of the areas $=9$

8-66. 80 inches or ≈ 6.67 feet
8-67. The area of the hexagon $\approx 23.4 \mathrm{ft}^{2}$. Adding the rectangles makes the total area $\approx 41.4 \mathrm{ft}^{2}$.

8-68. a: Reasoning will vary, but it is most likely that you will earn more extra credit if the class spins the spinner with the options of 5 and 10 points.
b: Reasoning will vary, but now the first spinner is definitely more attractive.
8-69. $4 x^{2}=2 x^{2}+17 x-30, x=2.5$ or 6 : yes, there are two possible answers.
8-70. B

8.2.2:

8-76. a: $\frac{3}{4}$
b: $r p$
c: $a r^{2}$

8-77.
$\mathbf{a}: \approx 403.1 \mathrm{~cm}^{2}$
b: $\approx 100.8 \mathrm{~cm}^{2}$

8-78. a: $5+1=6$, so two sides will collapse on the third side. b: Answers vary. One solution is 2,5 , and 6 .

8-79.

8-80. a: $A A S \cong, \triangle A B C \cong \triangle D C B \quad$ b: $A S A \cong, \triangle A B C \cong \triangle E D C$
8-81. D

8.3.1:

8-85. Area of the entire pentagon $\approx 172.05 \mathrm{un}^{2}$, so the shaded area $\approx \frac{3}{5}(172.05) \approx 103.23 \mathrm{un}^{2}$.

8-86. a: $x=14 \sqrt{3}, 30^{\circ}-60^{\circ}--90^{\circ}$ pattern
b: $x \approx 5.78$, Law of Sines
c: No solution because the hypotenuse must be the longest side
d: 24 units, triangle angle formula
8-87. 168°
8-88. $\overline{B C} \cong \overline{D C}$ and $\measuredangle A \cong \measuredangle E$ (given) and $\measuredangle B C A \cong \measuredangle D C E$ (vertical angles are \cong). So $\triangle A B C \cong \triangle E D C$ (AAS \cong) and $\overline{A B} \cong \overline{E D}(\cong \Delta s \rightarrow \cong$ parts $)$.

8-89. a: $(1.5,5)$
b: $y=\frac{4}{3} x+3$
c: 15 units

8-90. B

8.3.2:

8-96. $(100-25 \pi) \div 4 \approx 5.37$ square units
8-97. a: 8 b: 18

8-98. a: $x=26$; if lines are parallel and cut by a transversal, then alternate interior angles are equal.
b: $x=33, n=59^{\circ}$; if lines are parallel and cut by a transversal, then same-side exterior angles are supplementary.

8-99.
a: 20
b: ≈ 126.3 un 2

8-100. The area of the hexagon is $24 \sqrt{3}$ units, so the side length of the square is $\sqrt{24 \sqrt{3}} \approx 6.45$ units.

8-101. D

8.3.3:

8-106. $360^{\circ}-40^{\circ}=320^{\circ}$, so $\frac{320}{360}=\frac{8}{9} \approx 89 \%$.
8-107. a: $C=28 \pi$ un, $A=196 \pi$ un $^{2} \quad$ b: $C=10 \pi$ un, $A=25 \pi$ un 2
c: diameter $=100$ un, radius $=50$ un
8-108.

Statements	Reasons			
1. $A B$ $D E$ $\odot C$	and $\overline{D E}$ is a diameter of	1. [Given] \quad	2. $\angle A F C$ and $\measuredangle B F C$ are right angles.	2. [Definition of Perpendicular]
:---	:---			
3. $F C=F C$	3. [Reflexive Property]			
4. $\overline{A C}=\overline{B C}$	4. Definition of a Circle (radii must be equal)			
5. $[\triangle A F C \cong \triangle B F C$]	5. $\mathrm{HL} \cong$			
6. $\overline{A F} \cong \overline{F B}$	6. [$\cong \Delta s \rightarrow \cong$ parts]			

8-109. $\mathrm{a} \leftrightarrow 3, \mathrm{~b} \leftrightarrow 1, \mathrm{c} \leftrightarrow 4, \mathrm{~d} \leftrightarrow 2$
8-110. a: -3
b: -4
c: 3 and -3
d: 2 and -2

8-111. D

8-112. a: $(55)(60)+900 \pi \approx 6127.4$ square feet
b: $110+60 \pi \approx 298.5$ feet, $298.5 \cdot 8=\$ 2387.96$ or approximately $\$ 2,388$
c: Area is four times as big $\approx 24,509.6$ square feet; perimeter is twice as big ≈ 597 units.

8-113. a: $x+x+125^{\circ}+125^{\circ}+90^{\circ}=540^{\circ}, x=100^{\circ}$
b: $6 x+18^{\circ}=2 x+12^{\circ}, x=3^{\circ}$
8-114. a: $C D=22, B C=7$, and $E D=6$; the perimeter is $22+14+12=48$ units
b: $54(4)=216 \mathrm{~cm}^{2}$
8-115. a: $16 \sqrt{3} \approx 27.71$ square units b: 36 square units, more
c: $24 \sqrt{3} \approx 41.57$ square units; its area is greater than both the square and the equilateral triangle.
d: a circle

8-116. a: $2 \pi r=24 ; r=\frac{12}{\pi} ; A=\frac{144}{\pi} \approx 45.84$ square units
b: $2 \pi r=18 \pi ; r=9 ; A=81 \pi \approx 254.47$ square units
8-117. E

