Chapter 8

8.1.1:

8-6.	a: 110°	b: 70°	c: 48°	d: 108°		
8-7.	 a: The measure of an exterior angle of a triangle equals the sum of the measures of its remote interior angles. b: a+b+c=180° (the sum of the interior angles of a triangle is 180°), x+c=180° (straight angle); therefore, a+b+c=x+c (substitution) and a+b=xa+b=x (subtracting c from both sides). 					
8-8.	$x = 72^{\circ} \text{ and } y = 54^{\circ}$					
8-9.	$360^\circ \div 15^\circ = 24$					
8-10.	a: \cong (SAS \cong), $x = 79^{\circ}$ b: cannot be determinedc: \cong (AAS \cong), $x \approx 5.9$ unitsd: \cong (SAS \cong), $x \approx 60.9^{\circ}$					
8-11.	 a: True b: False (counterexample is a quadrilateral without parallel sides) c: True d: True e: False (counterexample is a parallelogram that is not a rhombus) 					

8.1.2:

- 8-16. a: isosceles right triangle, because AC = BC and $\overline{AC} \perp \overline{BC}$ b: 45°, methods vary
- **8-17.** *a* = 87°, *b* = 83°, *c* = 96°, *d* = 94°; 360°
- 8-18. $A = 40.5 \text{ un}^2$, $P \approx 27.7 \text{ units}$
- **8-19.** (-5,1), (-3,7), and (-6,2)

	Statements		Reasons
1.	$\overline{BC} \ / / \ \overline{EF}$, $\overline{AB} \ / / \ \overline{DE}$, and $AF = DC$	1.	[Given]
2.	$m \measuredangle BCF = m \measuredangle EFC$ and $m \measuredangle EDF = m \measuredangle CAB$	2.	[If two lines cut by a transversal are parallel, then alternate interior angles are equal.]
3.	[FC = FC]	3.	Reflexive Property
4.	AF + FC = CD + FC	4.	Additive Property of Equality (adding the same amount to both sides of an equation keeps the equation true)
5.	AC = DF	5.	Segment addition
6.	$\triangle ABC \cong \triangle DEF$	6.	[ASA ≅]
7.	$\begin{bmatrix} \overline{BC} \cong \overline{EF} \end{bmatrix}$	7.	$\cong \bigtriangleup s \rightarrow \cong$ parts

8-21. B

8-20.

8.1.3:

- **8-27.** a: A = 36 sq. ft, P = 28 ft b: A = 600 sq. cm, $P \approx 108.3$ cm
- 8-28. QP = RS and PR = SQ (given), QR = QR (Reflexive Property), so $\Delta PQR \cong \Delta SRQ$ (SSS \cong) and $\measuredangle P \cong \measuredangle S$ ($\cong \Delta s \rightarrow \cong$ parts).
- 8-29. a: isosceles triangle
 b: The central vertex must be 360° ÷ 10 = 36°. The other two angles must be equal since the triangle is isosceles. Therefore, (180° 36°) ÷ 2 = 72°.
 c: 10.14.5 = 145 square inches
- **8-30.** (6.5,5)
- 8-31. a: The region can be rearranged into a rectangle with dimensions 14 and 7 units.b: 14(7) = 98 square units
- 8-32. B

8.1.4:

- 8-37. The reflections are all congruent triangles with equal area. Therefore, the total area is (6)(11.42) = 68.52 square inches.
- 8-38. a: non-convex b: convex c: convex d: non-convex 8-39. a: $64un^2$ b: $\approx 27.0un^2$ c: $8\sqrt{3} \approx 13.9un^2$ 8-40. a: 3 b: 15 c: 4 d: 9
- 8-41. a: $A = 192 \text{ cm}^2$, P = 70 cm
 - **b:** The length of each side is 9 times the corresponding side in the floor plan. $A = 15,552 \text{ cm}^2$ and P = 630 cm.
 - c: The ratio is $\frac{9}{1} = 9$; the ratio of the perimeters equals the zoom factor
 - **d:** The ratio of the areas is $\frac{81}{1} = 81$. The ratio of the areas equals the square of the zoom factor (9²).

8-42. D

8.1.5:

- 8-49. a: The interior and exterior angles must be supplementary. Therefore, $180^{\circ} 20^{\circ} = 160^{\circ}$.
 - **b:** Possible ways: Use $360^\circ \div 20^\circ = 18$ sides or solve the equation $\frac{180(n-2)}{n} = 160^\circ$ to find n = 18.
- 8-50. a: $x = 18, y = 9\sqrt{3}$ b: $x = 24\sqrt{2}, y = 24$ c: $x = \frac{8}{\sqrt{3}} = \frac{8\sqrt{3}}{3}, y = \frac{16}{\sqrt{3}} = \frac{16\sqrt{3}}{3}$
- **8-51.** Since the diagonals of a parallelogram bisect each other, they must intersect at the midpoint of *BD*. Thus, they intersect at (6, 21).
- 8-52. $A = 100\sqrt{3} \approx 173.2 \text{ mm}^2$
- 8-53. a: $\pm \sqrt{\frac{17}{5}} \approx \pm 1.84$ b: $w \approx 2.17$ and -1.57 c: no solution possible
- **8-54.** E

8-55.	a:	60°	b: 82°	c:	14°	d:	117°
8-56.		equilateral nonagon	triangle		rectangle rhombus o	r kit	te

- 8-57. The x-coordinate must be 6, but the y-coordinate could be $6\sqrt{3}$ or $-6\sqrt{3}$.
- 8-58. a: Yes; since BC = BC (Reflexive Property), $\overline{AB} \cong \overline{DC}$ (given), and $\measuredangle ABC \cong DCB$ (given), then $\triangle ABC \cong \triangle DCB$ (SAS \cong). Therefore, AC = DB($\cong \Delta s \rightarrow \cong$ parts).
 - **b:** No; the relationships in the figure are true even if points *B* and *C* were "hinged," as long as the two angles remain congruent. See the diagram for problem 8-28 for a similar diagram.
- **8-59.** a: (-2.5,0) and (3,0)
 - **b:** The graph of $y = -(2x^2 x 15)$ would be the reflection of $y = 2x^2 x 15$ across the *x*-axis because each *y*-value would have its sign changed.
- 8-60. D

8.2.1:

- **8-65.** a: $A = 34 \text{ un}^2$, $P \approx 25.7$ units b: $A = 306 \text{ un}^2$, $P \approx 77$ units c: ratio of the perimeters = 3; ratio of the areas = 9
- **8-66.** 80 inches or ≈ 6.67 feet
- **8-67.** The area of the hexagon ≈ 23.4 ft². Adding the rectangles makes the total area ≈ 41.4 ft².
- 8-68. a: Reasoning will vary, but it is most likely that you will earn more extra credit if the class spins the spinner with the options of 5 and 10 points.b: Reasoning will vary, but now the first spinner is definitely more attractive.
- 8-69. $4x^2 = 2x^2 + 17x 30$, x = 2.5 or 6: yes, there are two possible answers.

8-70. B

8.2.2:

8-76.	a:	$\frac{3}{4}$	b: <i>rp</i>	c:	ar^2	
-------	----	---------------	---------------------	----	--------	--

8-77. a: $\approx 403.1 \text{ cm}^2$ b: $\approx 100.8 \text{ cm}^2$

8-78. a: 5+1=6, so two sides will collapse on the third side.
b: Answers vary. One solution is 2, 5, and 6.

8-79.

8-80. a: $AAS \cong \Delta ABC \cong \Delta DCB$ b: $ASA \cong \Delta ABC \cong \Delta EDC$

8-81. D

8.3.1:

- 8-85. Area of the entire pentagon $\approx 172.05 \text{ un}^2$, so the shaded area $\approx \frac{3}{5}(172.05) \approx 103.23 \text{ un}^2$.
- 8-86. a: $x = 14\sqrt{3}$, 30°-60°·-90° pattern c: No solution because the hypotenuse must be the longest side d: 24 units, triangle angle formula b: $x \approx 5.78$, Law of Sines
- **8-87.** 168°
- 8-88. $\overline{BC} \cong \overline{DC}$ and $\measuredangle A \cong \measuredangle E$ (given) and $\measuredangle BCA \cong \measuredangle DCE$ (vertical angles are \cong). So $\triangle ABC \cong \triangle EDC$ (AAS \cong) and $\overline{AB} \cong \overline{ED}$ ($\cong \Delta s \to \cong$ parts).
- **8-89.** a: (1.5,5) b: $y = \frac{4}{3}x + 3$ c: 15 units

8-90. B

8.3.2:

- 8-96. $(100 25\pi) \div 4 \approx 5.37$ square units
- **8-97.** a: 8 b: 18
- 8-98. a: x = 26; if lines are parallel and cut by a transversal, then alternate interior angles are equal.
 - **b:** x = 33, $n = 59^{\circ}$; if lines are parallel and cut by a transversal, then same-side exterior angles are supplementary.
- **8-99.** a: 20 b: $\approx 126.3 \text{ un}^2$
- 8-100. The area of the hexagon is $24\sqrt{3}$ units, so the side length of the square is $\sqrt{24\sqrt{3}} \approx 6.45$ units.

8-101. D

8.3.3:

8-106. $360^{\circ} - 40^{\circ} = 320^{\circ}$, so $\frac{320}{360} = \frac{8}{9} \approx 89\%$.

8-107. a: $C = 28\pi$ un, $A = 196\pi$ un² b: $C = 10\pi$ un, $A = 25\pi$ un² c: diameter = 100 un, radius = 50 un

8-108.

Statements	Reasons
1. $\overline{AB} \perp \overline{DE}$ and \overline{DE} is a diameter of $\odot C$.	1. [Given]
 ∠AFC and ∠BFC are right angles. 	2. [Definition of Perpendicular]
3. FC = FC	3. [Reflexive Property]
4. $\overline{AC} = \overline{BC}$	 Definition of a Circle (radii must be equal)
5. $[\triangle AFC \cong \triangle BFC]$	5. HL ≅
6. $\overline{AF} \cong \overline{FB}$	6. $[\cong \Delta s \rightarrow \cong \text{ parts }]$

8-109. $a \leftrightarrow 3, b \leftrightarrow 1, c \leftrightarrow 4, d \leftrightarrow 2$

8-110. a: -3 **b:** -4 **c:** 3 and -3 **d:** 2 and -2

8-111. D

- **8-112.** a: $(55)(60) + 900\pi \approx 6127.4$ square feet
 - **b:** $110 + 60\pi \approx 298.5$ feet, $298.5 \cdot 8 = 2387.96 or approximately \$2,388
 - c: Area is four times as big $\approx 24,509.6$ square feet; perimeter is twice as big ≈ 597 units.
- **8-113.** a: $x + x + 125^{\circ} + 125^{\circ} + 90^{\circ} = 540^{\circ}, x = 100^{\circ}$ b: $6x + 18^{\circ} = 2x + 12^{\circ}, x = 3^{\circ}$
- 8-114. a: CD = 22, BC = 7, and ED = 6; the perimeter is 22 + 14 + 12 = 48 units b: 54(4) = 216 cm²
- 8-115. a: $16\sqrt{3} \approx 27.71$ square units **b:** 36 square units, more c: $24\sqrt{3} \approx 41.57$ square units; its area is greater than both the square and the equilateral triangle.
 - d: a circle
- **8-116. a:** $2\pi r = 24$; $r = \frac{12}{\pi}$; $A = \frac{144}{\pi} \approx 45.84$ square units **b:** $2\pi r = 18\pi$; r = 9; $A = 81\pi \approx 254.47$ square units

8-117. E